

EasyOne Pro LAB

Erweiterte Lungenfunktionsprüfungen mit DLCO- und MBW-Tests als tragbare Lösung

Spirometrie (FVC, FVL, SVC und MVV) Diffusionskapazität (DLCO) Multiple-Breath-Washout (MBW)

Mit der bewährten <mark>TrueFlow</mark> und **TrueCheck** Ultraschalltechnologie von ndo

- kalibrierungsfrei
- ohne Aufwärmzeit

• ohne bewegliche Teile

Tragbar und leicht – ideal für Tests direkt am Point-of-Care

Benutzerfreundlich und intuitiv – sofort einsetzbar, ohne Aufwärmzeit

Hygienisch sicher – Einweg-Spiretten und -Barrietten verhindern Kreuzkontaminationen.

Schweizer Präzisionstechnik

Kalibrierungsfrei dank robuster Technologie

Dank geringem Wartungsaufwand bleibt mehr Zeit für die Patientenversorgung.

Die einzigartige Ultraschalltechnologie von ndd garantiert in allen Flow-Bereichen genaue Ergebnisse, unabhängig von Gaszusammensetzung, Druck, Temperatur und Feuchtigkeit. ndd **TrueFlow** ist eine widerstandsfreie Technologie. Die Geräte brauchen während ihrer gesamten Lebensdauer nicht kalibriert zu werden.

Patentiertes Verfahren zur Leistungsprüfung von ndd-Geräten

- Macht die Gaskalibrierung sowie einen externen DLCO-Simulator überflüssig
- 5-Punkte-Validierung, einschliesslich Stabilität und Linearisierung von Tracergas und CO-Sensoren
- Automatische Einstellung für die Fluss-Basislinie

Normen und Empfehlungen

 Qualităt,
 IEC 60601-1, IEC 60601-1-2, IEC 62304,

 elektronische und medizinische Geräte
 IEC 62366, ISO 13485, ISO 14971, ISO 26782,

FDA	510(k)-Zulassung
MDD 93/42/EWG	CE-Kennzeichnung
Verbände und Einrichtungen	ATS/ERS Spirometriestandards von 2022, 2019 und 2005, NIOSH, OSHA, SSA Disability, ATS/ERS DLCO-Standards von 2017 und 2005

Sprachen - Benutzeroberfläche

Chinesisch, Dänisch, Deutsch, Englisch, Finnisch, Französisch, Französisch (Kanada), Italienisch, Japanisch, Kroatisch, Niederländisch, Norwegisch, Polnisch, Portugiesisch, Portugiesisch (Brasilien), Russisch, Schwedisch, Spanisch, Türkisch, Vietnamesisch

Gaszusammensetzung

Für den DLCO-Test wird ein Gasgemisch mit einer Genauigkeit von <2 % in allen Bereichen benötigt.

DLCO

- 10 % Helium, Genauigkeit ±10 %
- 0,3 % Kohlenmonoxid, Genauigkeit ±10 %
- 18 % bis 25 % Sauerstoff
- Ausgleichsstickstoff

MBW 100 % Sauerstoff

MBW 1	100 % Sauerstoff		
Technische Daten			
Druckoptionen	Lokaler Drucker oder Netzwerkdrucker mit PCL-Standard		
Datenmanagement	EasyOne Connect (SQLite, MS SQL Server)		
Export	HL7, XML oder GDT über USB oder LAN		
Datenverbindungen	Ethernet-Port, USB, Option zum Upgrade auf WLAN		
Anzahl Tests	>10'000 Tests		
Altersbereich	Spirometrie: ≥4 Jahre, DLCO: ≥6 Jahre, MBW: ≥4 Jahre oder >18 kg		
Abmessungen	$27 \times 33,5 \times 27$ cm (H × B × T), 8 kg $10,6 \times 13,2 \times 10,6$ ", 17,65 lb		
Display	Grösse des Touchscreens: 12,1" Auflösung: 1024 × 768 Pixel		
Geräteklassifikation	Schutzklasse I; Anwendungsteil Typ BF		
Betriebsbedingungen	Temp.: 5–40 °C / 41–104 °F Rel: Luftfeuchtigkeit: 15–90 % ohne Kondensation Luftdruck: 620–1060 hPA		
Leistungsaufnahme	Bis 80 VA		

ATI, BEV, EOTV, FEF10, FEF25, FEF25-75, FEF25-75_6, FEF40, FEF50, FEF50/FVC, FEF50/VCmax, FEF60, FEF75, FEF75-85, FEF80, FET, FET25-75, FEV.25, FEV.5/FVC, FEV.75, FEV.75/FEV6, FEV.75/FVC, FEV.75/VCmax, FEV1, FEV1/FEV6, FEV1/FVC, FEV1/FVC6, FEV1/VC, FEV1/VC, FEV1/VCmax, FEV1, FEV1/VCmax, FEV1, MEF20, MEF25, MEF40, MEF50, MEF60, MEF75, MEF90, MMEF, MTC1, MTC2, MTC3, MTCR, PEF, PEFT, t0, VC, VCmax
ATI, BEV, CVI, E50/I50, EOTV, FEF10, FEF25, FEF25-75, FEF25-75_6, FEF40, FEF50, FEF50/FVC, FEF50/VCmax, FEF60, FEF75, FEF75-85, FEF80, FET, FET25-75, FEV.25, FEV.5/FVC, FEV.75, FEV.75/FEV6, FEV.75/FVC, FEV.75/VCmax, FEV1, FEV1/FEV6, FEV1/FIV1, FEV1/FIVC, FEV1/FVC, FEV1/VCmax, FEV3/FVC, FEV3/VCmax, FEV3, FEV6, FIF25, FIF 25-75, FIF50, FIF50/FEF50, FIF75, FIV.25, FIV.5, FIV1, FIVC, FVC, MEF20, MEF25, MEF40, MEF50, MEF60, MEF75, MEF90, MIF25, MIF50, MIF75, MMEF, MMIF, MTC1, MTC2, MTC3, MTCR, PEF, PEFT, PIF, t0, VC, VCmax
ERV, IC, IRV, Rf, VC, VCex, VCin, VCmax, VT
MVV, MVV6, MVVtime, Rf, VCext, VT
BHT, COHb, ColBarVol, CO Conc, HE Conc, O2 Conc, Anatomischer Totraum, SystTotraum, Verworfenes Volumen, DLadj, DLadj/VA, DLCO, DLCO/VA (KCO), ERV, FA CO, FA HE, FE CO, FEV1/FVC, FI CO, FI HE, FRC sb, FRC Cor, Hb, tl, Kroghs K, PaO2, RV sb, RV Cor, RV/TLC sb, RV/TLC Cor, TLC sb, TLC Cor, TLCO, VA sb, VA Cor, VCext, VCmax, Vd, VI, VT

Referenz-/S	ollwerte der Spirom	etrie		
GLI	Stanojevic 2009, Quanje	r 2012, Bowerman 2023 (GLI)		
Nordamerika	NHANES III (Hankinson) 1999, Knudson 1983, Knudson 1976, Crapo 1981, Morris 1971 & 1976, Hsu 1979, Dockery (Harvard) 1993, Polgar 1971, Gutierrez (Kanada) 2004, Eigen 2001, Cherniak 1972			
Lateinamerika	Chile 2010, Chile (Pädiatrie) 1997, Jones 2022, Pereira 1992, Pereira 2006/2008, Pereira-Prata 2018, Pérez- Padilla (PLATINO) 2006, Pérez-Padilla (Mexiko) 2001, Pérez-Padilla (Mexiko, Pädiatrie) 2003			
Europa	ERS (ECCS, EGKS, Quanjer) 1993, Garcia-Rio (SEPAR) 2013, Falaschetti 2004, Forche (Österreich) 1988 & 1994, Klement (Russland) 1986, Roca (Spanien, SEPAR) 1982, Rosenthal 1993, Sapaldia (Schweiz) 1996, Vilozni 2005, Zapletal 1977, Zapletal 2003			
Skandinavien	Hedenström (Schweden) 1985/1986, Gulsvik (Norwegen) 1985, Berglund Birath (Schweden) 1963, Langhammer (Norwegen) 2001, Finnish 1982/1998, Nystad 2002, Koillinen 1998, 2001, Kainu (Finnland) 2016			
Australien	Hibbert 1989, Gore Crockett 1995			
Asien	Chhabra (Indien) 2014, Dejsomritrutai (Thailand) 2000, (Indonesien) 1992, IP (China, Hongkong) 2000 & 2006, JRS 2001 & 2014			
Afrika	Mengesha (Äthiopien) 19	85		
Gassensor	СО	CO ₂		
Тур	Nichtdispersiver Infrarotsensor			
Bereich	0 bis 0,35 %	0 bis 10 %		
Auflösung	0,0001 % (1 ppm)	0,005 %		

CEV, CEV5, Anatomischer Totraum, SystTotraum, E MR2, Rf, RVmb, RV/TLCmb, TLCmb, VAmb, VC, VCex		RCextrapol, FRCmb, IC, IRV, LCI, LCI5, LCIao, MO, MR1, VT/FRCmb, VT/kg
erte der Spirometrie	Referer	nz-/Sollwerte für DLCO-Tests
ojevic 2009, Quanjer 2012, Bowerman 2023 (GLI)	Nord- amerika	Ayers 1975, Burrows 1961, Crapo 1981 & 1982, Knudson 1987, McGrath & Thompson 1959, Miller 1980, Gutierrez (Kanada) 2004, NHANES (Neas) 1996, Polgar 1971
NES III (Hankinson) 1999, Knudson 1983, Ison 1976, Crapo 1981, Morris 1971 & 1976, Hsu , Dockery (Harvard) 1993, Polgar 1971, Gutierrez	Latein- amerika	Vazquez Garcia (ALAT) 2016, Gochicoa 2019
ada) 2004, Eigen 2001, Cherniak 1972	Europa	Stanojevic (GLI) 2017, ERS ECCS/EGKS 1993, Zapletal 1977, Roca 1990 & 1998, Hedenström 1985 & 1986, Gulsvik 1992,
e 2010, Chile (Pädiatrie) 1997, Jones 2022, Pereira	ädiatrie) 1997, Jones 2022, Pereira Klement (Russland) 1	
r, Pereira 2006/2008, Pereira-Prata 2018, Pérez- la (PLATINO) 2006, Pérez-Padilla (Mexiko) 2001, z-Padilla (Mexiko, Pädiatrie) 2003	Weitere	Pereira 2008, Thompson 2008, Kim 2012, Chhabra (Indien) 2015, Ip (China, Hongkong) 2007, JRS (Japan) 2001
(ECCS, EGKS, Quanjer) 1993, Garcia-Rio (SEPAR)	Referer	nz-/Sollwerte für MBW-Tests
, Falaschetti 2004, Forche (Österreich) 1988 & , Klement (Russland) 1986, Roca (Spanien,	Europa	Verbanck 2012
NR) 1982, Rosenthal 1993, Sapaldia (Schweiz) 5, Vilozni 2005, Zapletal 1977, Zapletal 2003	Flow-/	Volumensensor
. " (0.1) 1005 (1005 . 0.1 . "	Messnrinz	in Ultraschalllaufzeit

Flow-/Volumensensor		
Messprinzip	Ultraschalllaufzeit	
Flow-Bereich	<u>±</u> 16 l/s	
Flow-Auflösung	≤1 ml/s	
Flow-Genauigkeit (ausser PEF)	±2,5 % oder 0,02 l/s	
PEF-Genauigkeit	<u>+</u> 5 % oder 0,200 l/s	
Volumengenauigkeit	<u>+</u> 2,5 % oder 0,050 l	
MVV-Genauigkeit	±5 % oder 5 l/min	
Widerstand	<1,5 cm H2O/l/s bei 14 l/s	

Gassensor	Helium	CO ₂
Тур	Ultraschalllaufzeit	
Bereich	0 bis 50 %	0 bis 100 %
Auflösung	0,02 %	0,1 %
Genauigkeit	0,05 %	0,2 %

Bestellnummern für Zubehör

±0,0015 % (15 ppm)

MBW

Spirette	Pkg. mit 50 Stück, 2050-1	DLCO-Barriette	Pkg. mit 50 Stück, 3050-1	Set für jährliche Wartung (Filterpaket, Patientenschlauch, Ein-	3000-50.50SP
	Pkg. mit 200 Stück, 2050-5	_	Pkg. mit 100 Stück, 3050-2	All and All and the condition of the condition of the condition	
	Pkg. mit 500 Stück, 2050-10	FRC-Barriette	Pkg. mit 40 Stück, 3150-1	-	
		_	Pkg mit 80 Stück 3150-2	-	

0,015 %