

EasyOne Pro LAB

Tests avancés de la fonction pulmonaire avec la DLCO et le rinçage en plusieurs respirations dans une solution portable

Spirométrie (FVC, FVL, SVC et MVV) Diffusion de CO en une seule respiration (DLCO) Rinçage en plusieurs respirations (MBW)

- sans calibrage
- sans temps de préchauffage
- aucune pièce mobile

Format portatif et léger conçu pour les tests au chevet du patient

Approche centrée sur l'utilisateur pour un fonctionnement intuitif et une accessibilité immédiate sans temps de préchauffage

Solution hygiénique équipée des consommables Spirette et Barriette, éliminant le risque de contamination croisée

Ingénierie de précision suisse

Technologie stable, aucun étalonnage nécessaire par l'utilisateur

Niveau de maintenance minimal, permettant d'accorder plus de temps aux soins du patient

La mesure du débit par ultrasons propre à ndd est très précise, quel que soit le débit et peu importe la composition des gaz, la pression, la température et le taux d'humidité.

ndd **TrueFlow** est une solution sans résistance qui ne nécessite aucun calibrage au cours de sa durée de vie

La méthode brevetée de vérification des performances des dispositifs ndd

- Élimine le besoin en calibrage de gaz ainsi que le besoin en simulateur DLCO externe
- Calibrage à 5 points comprenant stabilité et linéarité des gaz traceurs et capteurs de CO
- Réglage automatique de la ligne de référence du débit

normes et rec	ommandations
Qualité, dispositifs	CEI 60601-1, CEI 60601-1-2, CEI 62304,
électriques,	CEI 62366, ISO 13485, ISO 14971, ISO 26782,
médicaux	ISO 23747

FDA Autorisation de mise sur le marché 510(k)

Directive 93/42/CEE Homologation CE

Normes de spirométrie ATS/ERS 2022, 2019 et 2005, NIOSH, OSHA, invalidité SSA Normes DLCO ATS/ERS 2017 et 2005

Langues - Interface utilisateur

allemand, anglais, chinois, croate, danois, espagnol, finnois, français, français (Canada), italien, japonais, néerlandais, norvégien, polonais, portugais, portugais (Brésil), russe, suédois, turc, vietnamien

Spécifications du gaz

DLCO

Puissance

consommée

Le test DLCO requiert un mélange de gaz présentant un intervalle de précision < 2 %.

- 10 % d'hélium, précision de ±10 %
- 0,3 % de monoxyde de carbone, précision de ±10 %
- . 18 % à 25 % d'oxygène équilibre à l'azote

100 % d'oxygène

Spécifications	s techniques		
Options d'impression	PCL standard, directement sur l'imprimante ou via le réseau		
Gestion des données	EasyOne Connect (SQLite, serveur MS SQL)		
Exporter	HL7, XML, GDT, via USB, réseau LAN		
Liaisons de données	Port Ethernet, USB, option de mise à niveau vers la version WLAN		
Nombre de tests	>10 000 tests		
Catégorie d'âge	Spirométrie ≥4 ans, DLCO ≥6 ans, MBW ≥4 ans ou >18 kg		
Dimensions	27 x 33,5 x 27 cm (H x L x P), 8 kg 10,6 x 13,2 x 10,6 ", 17,65 lb		
Affichage	Taille de l'écran tactile : 12,1" Résolution : 1024 x 768 pixels		
Classification du dispositif	Classe de protection I ; partie appliquée de type BF		
Conditions de fonctionnement	Temp. 5-40 °C / 41-104 °F Humidité rel. 15-90 % sans condensation Pression atmosph. 620-1060 hPA		

Jusqu'à 80 VA

Paramètres	
FVC	ATI, BEV, EOTV, FEF10, FEF25, FEF25-75, FEF25-75_6, FEF40, FEF50, FEF50/FVC, FEF50/VCmax, FEF60, FEF75, FEF75-85, FEF80, FET, FET25-75, FEV.25, FEV.5, FEV.5/FVC, FEV.75/FEV6, FEV.75/FVC, FEV.75/VCmax, FEV1, FEV1/FV6, FEV1/FVC, FEV1/FVC6, FEV1/VCmax, FEV1Q, FEV3/FVC, FEV3/VCmax, FEV3, FEV6, FVC, MEF20, MEF25, MEF40, MEF50, MEF60, MEF75, MEF90, MMEF, MTC1, MTC2, MTC3, MTCR, PEF, PEFT, t0, VC, VCmax
FVL	ATI, BEV, CVI, E50/I50, EOTV, FEF10, FEF25, FEF25-75, FEF25-75_6, FEF40, FEF50, FEF50/FVC, FEF50/VCmax, FEF60, FEF75, FEF75-85, FEF80, FET, FET25-75, FEV.25, FEV.5/FVC, FEV.75, FEV.75/FEV6, FEV.75/FVC, FEV.75/VCmax, FEV1, FEV1/FEV6, FEV1/FIV1, FEV1/FIVC, FEV1/FVC, FEV1/VCmax, FEV3/VCmax, FEV3/VCmax, FEV3, FEV6, FIF25, FIF 25-75, FIF50, FIF50/FEF50, FIF75, FIV.25, FIV.5, FIV1, FIVC, FVC, MEF20, MEF25, MEF40, MEF50, MEF60, MEF75, MEF90, MIF25, MIF50, MIF75, MMEF, MMIF, MTC1, MTC2, MTC3, MTCR, PEF, PEFT, PIF, t0, VC, VCmax
SVC	ERV, IC, IRV, Rf, VC, VCex, VCin, VCmax, VT
MVV	MVV, MVV6, MVVtime, Rf, VCext, VT
DLCO	BHT, COHb, ColBarVol, CO Conc, HE Conc, O2 Conc, Espace mort anatomique, Espace mort système, Volume déduit, DLadj, DLadj/VA, DLCO, DLCO/VA (KCO), ERV, FA CO, FA HE, FE CO, FEV1/FVC, FI CO, FI HE, FRC sb, FRC Cor, Hb, tl, Kroghs K, PaO2, RV sb, RV Cor, RV/TLC sb, RV/TLC Cor, TLC sb, TLC Cor, TLCO, VA sb, VA Cor, VCext, VCmax, Vd, VI, VT
MBW	CEV, CEV5, Espace mort anatomique, Espace mort système, ERV, FRCbase, FRCextrapol, FRCmb, IC, IRV, LCI, LCI5, LCIao, MO, MR1, MR2, Rf, RVmb, RV/TLCmb, TLCmb, VAmb, VC, VCex, VCin, Vd, VT, VT/FRCmb, VT/kg

Valeurs théoriques normales - Spirométrie			
GLI	Stanojevic 2009, Quanjer 2012, Bowerman 2023 (Global GLI)		
Amérique du Nord	NHANES III (Hankinson) 1999, Knudson 1983, Knudson 1976, Crapo 1981, Morris 1971 & 1976, Hsu 1979, Dockery (Harvard) 1993, Polgar 1971, Gutierrez (Canada) 2004, Eigen 2001, Cherniak 1972		
Amérique latine	Chile 2010, Chile (pédiatrie) 1997, Jones 2022, Pereira 1992, Pereira 2006/2008, Pereira-Prata 2018, Pérez- Padilla (PLATINO) 2006, Pérez-Padilla (Mexique) 2001, Pérez-Padilla (Mexique, pédiatrie) 2003		
Europe	ERS (ECCS, EGKS, Quanjer) 1993, Garcia-Rio (SEPAR) 2013, Falaschetti 2004, Forche (Autriche) 1988 & 1994, Klement (Russie) 1986, Roca (Espagne, SEPAR) 1982, Rosenthal 1993, Sapaldia (Suisse) 1996, Vilozni 2005, Zapletal 1977, Zapletal 2003		
Europe - Scandinavie	Hedenström (Suède) 1985/1986, Gulsvik (Norvège) 1985, Berglund Birath (Suède) 1963, Langhammer (Norvège) 2001, Finnish 1982/1998, Nystad 2002, Koillinen 1998, 2001, Kainu (Finlande) 2016		
Australie	Hibbert 1989, Gore Crockett 1995		
Asie	Chhabra (Inde) 2014, Dejsomritrutai (Thaïlande) 2000, (Indonésie) 1992, IP (Chine, Hong Kong) 2000 & 2006, JRS 2001 & 2014		
Afrique	Mengesha (Éthiopie) 1985		

Capteur de gaz	со	CO ₂
Туре	Infrarouge non dispersif	
Intervalle	0 à 0,35 %	0 à 10 %
Résolution	0,0001 % (1 ppm)	0,005 %
Précision	± 0,0015 % (15 ppm)	0,015 %

Valeurs	Valeurs théoriques normales - DLCO		
Amérique du Nord	Ayers 1975, Burrows 1961, Crapo 1981 & 1982, Knudson 1987, McGrath & Thompson 1959, Miller 1980, Gutierrez (Canada) 2004, NHANES (Neas) 1996, Polgar 1971		
Amérique latine	Vazquez Garcia (ALAT) 2016, Gochicoa 2019		
Europe	Stanojevic (GLI) 2017, ERS ECCS/EGKS 1993, Zapletal 1977, Roca 1990 & 1998, Hedenström 1985 & 1986, Gulsvik 1992, Klement (Russie) 1986		
Autre	Pereira 2008, Thompson 2008, Kim 2012, Chhabra (Inde) 2015, In (Chine, Hong Kong) 2007, JRS (Japon) 2001		

Valeurs théoriques normales - MBW

Europe Verbanck 2012

Capteur débit/volume		
Principe de mesures	Temps de transit à ultrasons	
Intervalle de débit	±16 L/s	
Résolution de débit	≤1 mL/s	
Précision du débit (excepté PEF)	±2,5 % ou 0,02 L/s	
Précision PEF	<u>+</u> 5 % ou 0,200 L/s	
Précision du volume	±2,5 % ou 0,050 L	
Précision MVV	<u>+</u> 5 % ou 5 L/min	
Résistance	<1,5 cm H2O/L/s à 14 L/s	

Capteur de gaz	Hélium	CO ₂	
Туре	Temps de transit à ultrasons		
Intervalle	0 à 50 %	0 à 100 %	
Résolution	0,02 %	0,1 %	
Précision	0.05 %	0.2 %	

Accessoires et numéros de commandes

Spirette	Boîtes de 50 pièces 2050-1	Barriette DLCO	Boîtes de 50 pièces 3050-1	Kit de remplacement annuel (cartouche de filtration, tube patient,	3000-50.50SP
	Boîtes de 200 pièces 2050-5	-	Boîtes de 100 pièces 3050-2	valve unidirectionnelle, valve de surpression)	
	Boîtes de 500 pièces 2050-10	Barriette FRC	Boîtes de 40 pièces 3150-1	-	
		-	Boîtes de 80 nièces 3150-2	_	