

EasyOne Pro LAB

Testagem de função pulmonar avançada com DLCO e MBW em uma solução portátil

Espirometria (FVC, FVL, SVC e MVV) Difusão de CO de respiração única (DLCO)

Lavagem em várias respirações (MBW)

- sem calibragem
- sem necessidade de tempo de aquecimento
- sem peças móveis

Conceção portátil e leve, adaptada para testagem no ponto de atendimento

Abordagem centrada no usuário para operação intuitiva, usabilidade imediata sem tempo de aquecimento.

A solução higiênica com consumíveis spirette e barriette elimina o risco de contaminação cruzada.

Engenharia de precisão suíça

Tecnologia estável, sem necessidade de calibração pelo usuário

Manutenção mínima, permitindo mais tempo para se dedicar ao atendimento ao paciente.

A medição de fluxo ultrassônica única do ndd é altamente precisa em todas as faixas de fluxo, independentemente da composição do gás, da pressão, da temperatura e da umidade. O ndd **TrueFlow** é uma solução sem resistência que não requer calibração durante toda a vida útil.

Método patenteado para verificar o desempenho das máquinas ndd

- Elimina a necessidade de calibração de gás, bem como a necessidade de uso de um simulador DLCO externo
- Calibração de 5 pontos, incluindo estabilidade e linearidade de gás traçador e sensores CO
- Definição de linha de base de fluxo automática

Normas e recomendações

Qualidade,

dispositivos médicos e elétricos	62366, ISO 13485, ISO 14971, ISO 26782, ISO 23747
FDA	510(k) liberação de mercado
MDD 93/42/CEE	Marcação CE
Associações e institutos	Normas de espirometria ATS/ERS 2022, 2019 & 2005, NIOSH, OSHA, Inaptidão SSA, normas de DLCO ATS/ERS 2017 & 2005

IEC 60601-1, IEC 60601-1-2, IEC 62304, IEC

Idiomas – Interface do usuário

Alemão, chinês, croata, dinamarquês, espanhol, finlandês, francês, francês (Canadá), holandês, inglês, italiano, japonês, neerlandês, norueguês, polaco, português, português (Brasil), russo, sueco, turco,

Especificações de gás

	O teste	DLCO requer uma mistura de gás com
	um inte	ervalo de exatidão de <2%.
	• 10	% hélio, exatidão <u>+</u> 10%
DLCO	• 0,3	3 % monóxido de carbono, exatidão +10%
	• 18	% a 25 % oxigênio
	 Ba 	lanço de nitrogênio

MBW 100% oxigênio

	oes te	

Especificaçõe	s técnicas	
Opções de impressão	Norma PCL, diretamente para a impressora ou através da rede	
Gerenciamento de dados	EasyOne Connect (SQLite, MS SQL Server)	
Exportar	HL7, XML, GDT, via USB, rede LAN	
Conexões de dados	Porta Ethernet, USB, opção de atualização para WLAN	
N.º de testes	>10 000 testes	
Faixa etária	Espirometria ≥4 anos, DLCO ≥6 anos, MBW ≥4 anos ou >18 kg	
Dimensões	27 x 33,5 x 27 cm (A x L x P), 8 kg 10,6 x 13,2 x 10,6", 17,65 lb	
Tela	Dimensão da tela tátil: 12,1" Resolução: 1024 x 768 pixels	
Classificação do dispositivo	Classe de proteção I; peça aplicada do Tipo BF	
Condições de operação	Temp 5-40 °C/41-104 °F Umidade relat. 15-90%, sem condensação Pressão atmosférica 620-1060 hPa	
Consumo de energia	Até 80 VA	

Parâmetros	
FVC	ATI, BEV, EOTV, FEF10, FEF25, FEF25-75, FEF25-75_6, FEF40, FEF50, FEF50/FVC, FEF50/VCmax, FEF60, FEF75, FEF75-85, FEF80, FET, FET25-75, FEV.25, FEV.5, FEV.5/FVC, FEV.75/FVC, FEV.75/FVC, FEV.75/VCmax, FEV1, FEV1/FEV6, FEV1/FVC, FEV1/FVC6, FEV1/VC, FEV1/VC, FEV1/VCmax, FEV1Q, FEV3/FVC, FEV3/VCmax, FEV3, FEV6, FVC, MEF20, MEF25, MEF40, MEF50, MEF60, MEF75, MEF90, MMEF, MTC1, MTC2, MTC3, MTCR, PEF, PEFT, t0, VC, VCmax
FVL	ATI, BEV, CVI, E50/I50, EOTV, FEF10, FEF25, FEF25-75, FEF25-75_6, FEF40, FEF50, FEF50/FVC, FEF50/VCmax, FEF60, FEF75, FEF75-85, FEF80, FET, FET25-75, FEV.25, FEV.5/FVC, FEV.75/FV6, FEV.75/FVC, FEV.75/FVC, FEV.75/VCmax, FEV1, FEV1/FEV6, FEV1/FIV1, FEV1/FVC, FEV1/FVC, FEV1/VC, FEV1/VCmax, FEV3/VCmax, FEV3/VCmax, FEV1Q, FEV3, FEV6, FIF25, FIF 25-75, FIF50, FIF50/FEF50, FIF75, FIV.25, FIV.5, FIV1, FIVC, FVC, MEF20, MEF25, MEF40, MEF50, MEF60, MEF75, MEF90, MIF25, MIF50, MIF75, MMEF, MMIF, MTC1, MTC2, MTC3, MTCR, PEF, PEFT, PIF, t0, VC, VCmax
SVC	ERV, IC, IRV, Rf, VC, VCex, VCin, VCmax, VT
MVV	MVV, MVV6, MVVtime, Rf, VCext, VT
DLCO	BHT, COHb, ColBarVol, CO Conc, HE Conc, O2 Conc, espaço morto anatômico, espaço morto do sistema, volume de descarte, DLadj, DLadj/VA, DLCO, DLCO/VA (KCO), ERV, FA CO, FA HE, FE CO, FEV1/FVC, FI CO, FI HE, FRC sb, FRC Cor, Hb, tl, Kroghs K, PaO2, RV sb, RV Cor, RV/TLC sb, RV/TLC Cor, TLC sb, TLC Cor, TLCO, VA sb, VA Cor, VCext, VCmax, Vd, Vl, VT
MBW	CEV, CEV5, espaço morto anatômico, espaço morto do sistema, ERV, base FRC, extrapolação FRC, FRCmb, IC, IRV, LCI, LCI5, LCIao, MO, MR1, MR2, Rf, RVmb, RV/TLCmb, TLCmb, VAmb, VC, VCex, VCin, Vd, VT, VT/FRCmb, VT/kg

Valores normais previstos – Espirometria			
GLI	Stanojevic 2009, Quanjer 2012, Bowerman 2023 (Global GLI)		
América do Norte	NHANES III (Hankinson) 1999, Knudson 1983, Knudson 1976, Crapo 1981, Morris 1971 e 1976, Hsu 1979, Dockery (Harvard) 1993, Polgar 1971, Gutierrez (Canadá) 2004, Eigen 2001, Cherniak 1972		
América Latina	Chile 2010, Chile (Pediatria) 1997, Jones 2022, Pereira 1992, Pereira 2006/2008, Pereira-Prata 2018, Pérez-Padilla (PLATINO) 2006, Pérez-Padilla (México) 2001, Pérez-Padilla (México, Pediatria) 2003		
Europa	ERS (ECCS, EGKS, Quanjer) 1993, Garcia-Rio (SEPAR) 2013, Falaschetti 2004, Forks (Áustria) 1988 e 1994, Klement (Rússia) 1986, Roca (Espanha, SEPAR) 1982, Rosenthal 1993, Sapaldia (Suíça) 1996, Vilozni 2005, Zapletal 1977, Zapletal 2003		
Europa Escandinávia	Hedenström (Suécia) 1985/1986, Gulsvik (Noruega) 1985, Berglund Birath (Suécia) 1963, Langhammer (Noruega) 2001, Finnish 1982/1998, Nystad 2002, Koillinen 1998, 2001, Kainu (Finlândia) 2016		
Austrália	Hibbert 1989, Gore Crockett 1995		
Ásia	Chhabra (Índia) 2014, Dejsomritrutai (Tailândia) 2000, (Indonésia) 1992, IP (China, Hong Kong) 2000 & 2006, JRS 2001 & 2014		
África	Mengesha (Etiópia) 1985		

Sensor de gás	со	CO ₂
Tipo	Infravermelho não dispersivo	
Intervalo	0 a 0,35%	0 a 10%
Resolução	0,0001% (1 ppm)	0,005%
Exatidão	± 0,0015% (15 ppm)	0,015%

Amb, VC, VCex, VCin, Va, VI, VI/FRCmb, VI/kg				
Valores	Valores normais previstos – DLCO			
América do Norte	Ayers 1975, Burrows 1961, Crapo 1981 & 1982, Knudson 1987, McGrath & Thompson 1959, Miller 1980, Gutierrez (Canadá) 2004, NHANES (Neas) 1996, Polgar 1971			
América Latina	Vazquez Garcia (ALAT) 2016, Gochicoa 2019			
Europa	Stanojevic (GLI) 2017, ERS ECCS/EGKS 1993, Zapletal 1977, Roca 1990 & 1998, Hedenström 1985 & 1986, Gulsvik 1992, Klement (Rússia) 1986			
Outros	Pereira 2008, Thompson 2008, Kim 2012, Chhabra (Índia) 2015, Ip (China, Hong Kong) 2007, JRS (Japão) 2001			
V-1	MDW.			

Valores normais previstos – MBW

Europa Verbanck 2012

Sensor de fluxo/volume	
Princípio de medição	Tempo de trânsito ultrassônico
Intervalo de fluxo	<u>±</u> 16 l/s
Resolução de fluxo	≤1 ml/s
Exatidão do fluxo (exceto PEF)	±2,5% ou 0,02 l/s
Exatidão de PEF	±5% ou 0,200 l/s
Exatidão de volume	±2,5% ou 0,050 l
Exatidão de MVV	±5% ou 5 l/min
Resistência	<1,5 cm H2O/l/s a 14 l/s

Sensor de gás	Hélio	CO ₂
Tipo	Tempo de trânsito ultrassônico	
Intervalo	0 a 50%	0 a 100%
Resolução	0,02%	0,1%
Exatidão	0,05%	0,2%

Acessórios e números de pedido

Spirette	Caixa de 50 unid. 2050-1	Barriette DLCO	Caixa de 50 unid. 3050-1	Kit de substituição anual . (conjunto de filtro, tubo de paciente, _ válvula de sentido único e válvula de sobrepressão)	3000-50.50SP
	Caixa de 200 unid. 2050-5	_	Caixa de 100 unid. 3050-2		
	Caixa de 500 unid. 2050-10	Barriette FRC	Caixa de 40 unid. 3150-1	-	
		_	Caixa de 80 unid. 3150-2	-	